Find the Coordinates of the Point at Which the Tangent to the Curve Meets the Curve Again Practice

6.iv Equation of a tangent to a curve (EMCH8)

temp text

At a given point on a curve, the slope of the curve is equal to the gradient of the tangent to the bend.

7fc48b5455f636efe7e121fa8485c889.png

The derivative (or gradient function) describes the slope of a curve at whatever point on the bend. Similarly, information technology likewise describes the slope of a tangent to a curve at any signal on the curve.

To determine the equation of a tangent to a curve:

  1. Notice the derivative using the rules of differentiation.
  2. Substitute the \(x\)-coordinate of the given point into the derivative to calculate the slope of the tangent.
  3. Substitute the slope of the tangent and the coordinates of the given point into an advisable course of the direct line equation.
  4. Make \(y\) the subject of the formula.

The normal to a curve is the line perpendicular to the tangent to the bend at a given point.

\[m_{\text{tangent}} \times m_{\text{normal}} = -1\]

Worked example 13: Finding the equation of a tangent to a bend

Notice the equation of the tangent to the curve \(y=3{x}^{2}\) at the point \(\left(ane;iii\correct)\). Sketch the curve and the tangent.

Observe the derivative

Employ the rules of differentiation:

\begin{align*} y &= iii{x}^{two} \\ & \\ \therefore \frac{dy}{dx} &= 3 \left( 2x \right) \\ &= 6x \terminate{align*}

Calculate the gradient of the tangent

To make up one's mind the slope of the tangent at the indicate \(\left(1;three\right)\), we substitute the \(x\)-value into the equation for the derivative.

\begin{align*} \frac{dy}{dx} &= 6x \\ \therefore grand &= half dozen(1) \\ &= half-dozen \end{align*}

Determine the equation of the tangent

Substitute the gradient of the tangent and the coordinates of the given point into the gradient-point grade of the straight line equation.

\begin{align*} y-{y}_{one} & = m\left(10-{x}_{i}\right) \\ y-3 & = 6\left(ten-1\correct) \\ y & = 6x-6+3 \\ y & = 6x-3 \end{align*}

Sketch the curve and the tangent

a624b41da05a79e22fc3a20f66bc1515.png

Worked case fourteen: Finding the equation of a tangent to a bend

Given \(g(10)= (x + 2)(2x + 1)^{two}\), make up one's mind the equation of the tangent to the bend at \(x = -1\) .

Determine the \(y\)-coordinate of the indicate

\brainstorm{align*} g(x) &= (x + ii)(2x + 1)^{2} \\ g(-i) &= (-1 + 2)[2(-1) + 1]^{2} \\ &= (1)(-1)^{2} \\ & = one \terminate{align*}

Therefore the tangent to the curve passes through the point \((-ane;1)\).

Expand and simplify the given part

\begin{align*} g(10) &= (x + 2)(2x + 1)^{2} \\ &= (x + 2)(4x^{2} + 4x + ane) \\ &= 4x^{three} + 4x^{2} + x + 8x^{2} + 8x + two \\ &= 4x^{iii} + 12x^{two} + 9x + 2 \stop{align*}

Notice the derivative

\begin{marshal*} g'(ten) &= four(3x^{two}) + 12(2x) + 9 + 0 \\ &= 12x^{ii} + 24x + ix \stop{align*}

Calculate the gradient of the tangent

Substitute \(x = -\text{1}\) into the equation for \(thou'(x)\):

\begin{marshal*} g'(-1) &= 12(-i)^{2} + 24(-1) + 9 \\ \therefore m &= 12 - 24 + 9 \\ &= -3 \end{align*}

Determine the equation of the tangent

Substitute the slope of the tangent and the coordinates of the signal into the gradient-point form of the direct line equation.

\begin{marshal*} y-{y}_{ane} & = m\left(x-{x}_{1}\right) \\ y-1 & = -three\left(x-(-ane)\correct) \\ y & = -3x - 3 + 1 \\ y & = -3x - 2 \terminate{align*}

Worked example 15: Finding the equation of a normal to a curve

  1. Determine the equation of the normal to the curve \(xy = -4\) at \(\left(-1;4\right)\).
  2. Describe a rough sketch.

Find the derivative

Make \(y\) the subject of the formula and differentiate with respect to \(x\):

\brainstorm{align*} y &= -\frac{4}{x} \\ &= -4x^{-ane} \\ & \\ \therefore \frac{dy}{dx} &= -4 \left( -1x^{-two} \right) \\ &= 4x^{-2} \\ &= \frac{iv}{ten^{ii}} \terminate{align*}

Summate the gradient of the normal at \(\left(-one;iv\right)\)

First determine the slope of the tangent at the given point:

\begin{align*} \frac{dy}{dx} &= \frac{four}{(-i)^{two}} \\ \therefore m &= 4 \finish{align*}

Use the gradient of the tangent to calculate the gradient of the normal:

\begin{align*} m_{\text{tangent}} \times m_{\text{normal}} &= -1 \\ 4 \times m_{\text{normal}} &= -1 \\ \therefore m_{\text{normal}} &= -\frac{1}{iv} \finish{align*}

Notice the equation of the normal

Substitute the gradient of the normal and the coordinates of the given point into the slope-signal form of the straight line equation.

\begin{align*} y-{y}_{1} & = m\left(ten-{x}_{ane}\right) \\ y-4 & = -\frac{ane}{iv}\left(x-(-1)\right) \\ y & = -\frac{ane}{four}x - \frac{i}{4} + iv\\ y & = -\frac{one}{4}ten + \frac{15}{4} \cease{align*}

Draw a rough sketch

20069b2e667f1dad6e7882fd2f900284.png

Equation of a tangent to a curve

Textbook Exercise half-dozen.5

Determine the equation of the tangent to the curve divers by \(F(ten)=x^{iii}+2x^{2}-7x+1\) at \(ten=2\).

\brainstorm{align*} \text{Gradient of tangent }&= F'(x) \\ F'(ten) &=3x^{ii} +4x - vii \\ F'(2) &=iii(2)^{ii} + (4)(2) -7 \\ &=13 \\ \therefore \text{Tangent: } y &=13x +c \cease{marshal*}

where \(c\) is the \(y\)-intercept.

Tangent meets \(F(ten)\) at \((2;F(two))\)

\begin{marshal*} F(2) &=(ii)^{3} + 2(two)^{2} - 7(2) +ane \\ &= 8 + 8 -fourteen +1 \\ &=iii \\ \text{Tangent: } 3 &=13(2) + c \\ \therefore c &= - 23 \\ y & = 13x - 23 \end{align*}

\(f(x)=1-3x^{2}\) is equal to \(\text{5}\).

\begin{marshal*} \text{Slope of tangent } = f'(x) = -6x \\ \therefore -6x &= 5 \\ \therefore x &= - \frac{5}{vi} \\ \text{And } f\left(- \frac{five}{6} \right) &=1-3 \left( - \frac{5}{6} \right)^{ii} \\ &=one-3 \left( \frac{25}{36} \right) \\ &=1 - \frac{25}{12} \\ &= - \frac{13}{12} \\ \therefore & \left( - \frac{v}{6};- \frac{thirteen}{12} \right) \terminate{align*}

\(g(ten)=\frac{1}{iii}x^{2}+2x+1\) is equal to \(\text{0}\).

\begin{marshal*} \text{Gradient of tangent } = k'(x) = \frac{two}{3}x+2 \\ \therefore \frac{2}{3}10+2 &=0 \\ \frac{2}{three}x &= -2\\ \therefore x&=-2 \times \frac{3}{ii} \\ &=-three \\ \text{And } thousand(-3) &= \frac{ane}{3}(-3)^{2}+ii(-3)+1 \\ &= \frac{1}{three}(9)-half dozen+1 \\ &= 3-6+one \\ &= -2 \\ \therefore & (-3;-2) \end{align*}

parallel to the line \(y=4x-2\).

\begin{align*} \text{Gradient of tangent }&= f'(x) \\ f(x)&=(2x-i)^{ii} \\ &= 4x^{two}-4x+1 \\ \therefore f'(x)&= 8x-four \\ \text{Tangent is parallel to } y&=4x-2 \\ \therefore 1000&=4 \\ \therefore f'(x) = 8x-4 &= 4 \\ 8x &= eight \\ x & = one\\ \text{For } 10=1: \quad y & = (2(ane)-one)^{ii} \\ & = one \end{align*}

Therefore, the tangent is parallel to the given line at the point \((1;ane)\).

perpendicular to the line \(2y+x-4=0\).

\begin{align*} \text{Perpendicular to } 2y + x - four &= 0 \\ y&= -\frac{1}{two}x+ii\\ \therefore \text{ gradient of } \perp \text{ line } & = 2 \quad (m_1 \times m_2 = -1) \\ \therefore f'(ten) &= 8x-4 \\ \therefore 8x-four &=2\\ 8x&=6\\ x&=\frac{3}{4} \\ \therefore y&=\left[2\left(\frac{three}{four}\right)-1\right]^{ii} \\ &=\frac{1}{iv} \\ \therefore \left(\frac{3}{iv};\frac{i}{4}\right) \end{align*}

Therefore, the tangent is perpendicular to the given line at the point \(\left(\frac{iii}{4};\frac{1}{4}\right)\).

Draw a graph of \(f\), indicating all intercepts and turning points.

Complete the foursquare:

\begin{align*} y&=-[ten^{ii}-4x+3] \\ &=-[(x-2)^{two}-4+3] \\ &=-(10-ii)^{2}+1\\ \text{Turning bespeak}:&(2;1) \stop{align*} \(\text{Intercepts:}\\ y_{\text{int}}: x = 0, y = -iii \\ x_{\text{int}}: y=0, \\ -x^{2} +4x -three = 0 \\ x^{two} - 4x + 3 = 0 \\ (x-three)(x-1) = 0 \\ x=3 \text{ or } x=1 \\ \text{Shape: "pout" } (a < 0) \\\) 69fcf154dba0672f7723d3c6c3cf39b1.png

Detect the equations of the tangents to \(f\) at:

  1. the \(y\)-intercept of \(f\).
  2. the turning point of \(f\).
  3. the point where \(ten = \text{iv,25}\).
  1. \begin{marshal*} y_{\text{int}}: (0;-3) \\ m_{\text{tangent}} = f'(x) &= -2x + iv \\ f'(0) &=-two(0) + 4 \\ \therefore m &=4\\ \text{Tangent }y&=4x+c\\ \text{Through }(0;-3) \therefore y&=4x-three \end{marshal*}
  2. \brainstorm{align*} \text{Turning betoken: } (2;1) \\ m_{\text{tangent}} = f'(two) &= -2(two) + 4 \\ &=0\\ \text{Tangent equation } y &= 1 \end{align*}
  3. \begin{align*} \text{If } 10 &=\text{iv,25} \\ f(\text{4,25})&=-\text{4,25}^{2}+iv(\text{four,25})-three \\ &= -\text{four,0625} \\ m_{\text{tangent}} \text{ at } ten&= \text{4,25} \\ m&=-2(\text{4,25})+iv\\ &=-\text{4,5} \\ \text{Tangent }y&=-\text{4,v}x+c\\ \text{Through }(\text{4,25};-\text{4,0625}) \\ -\text{four,0625}&=-\text{4,5}(\text{4,25})+c\\ \therefore c&= \text{15,0625} \\ y&=-\text{four,v}x+\text{15,0625} \end{align*}

Depict the three tangents higher up on your graph of \(f\).

5488a7c7dff4a2f10b3febac38fbcf25.png

Write downwards all observations about the three tangents to \(f\).

Tangent at \(y_{\text{int}}\) (blue line): gradient is positive, the function is increasing at this point.

Tangent at turning indicate (greenish line): slope is zero, tangent is a horizontal line, parallel to \(x\)-axis.

Tangent at \(x=\text{iv,25}\) (purple line): gradient is negative, the role is decreasing at this point.

hudsonbaimet.blogspot.com

Source: https://www.siyavula.com/read/maths/grade-12/differential-calculus/06-differential-calculus-04

0 Response to "Find the Coordinates of the Point at Which the Tangent to the Curve Meets the Curve Again Practice"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel